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Introduction

• Classical/neural synthesis of control systems
Prior knowledge
Adaptive control and artificial neural networks

• Adaptive critics
Learn in real time
Cope with noise
Cope with many variables
Plan over time in a complex way
...

Action network takes immediate control action

Critic network estimates projected cost

• Adaptation takes place during every time interval:



Motivation

• Provide full envelope control

• Multiphase learning:
Pre-training phase, motivated by corresponding linear controller

On-line training phase, during simulations or testing

• On-line training accounts for:

Differences between actual and assumed dynamic models
Nonlinear effects not captured in linearizations

• Potential applications:
Incorporate pilot's knowledge into controller a-priori
Uninhabited air vehicles control

Aerobatic flight control
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Aircraft Control Design Approach
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Linear control design:

• Longitudinal

• Lateral-directional



Linear Proportional-Integral Controller

Closed-loop stability: ( ) ,ct xx → ( ) 0~ →ty( ) ,ct uu →

yc = desired output,  (xc,uc) = set point.
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Omitting ∆'s, for simplicity:
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Where: ( ) ,ct xx → ( ) ,0~ →ty( ) ,ct uu → ( ) cs t yy →

Proportional-Integral Neural Network Controller
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Algebraic Neural Network Pre-training Phase

Feedback:
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Combine longitudinal and 

lateral-directional networks:
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NNB , etc. ...

Obtain action network:
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Integral Error: Critic:



Comparison of Neural Network and Linear Controllers
Between Training Points

Velocity
(m/s)

Climb
Angle
(deg)

Roll
Angle
(deg)

Sideslip
Angle
(deg)

Time (sec)

Flight condition: (14,000 m; 220 m/s)

NN-Control
Linear Control

Velocity and
Climb Angle 

Command

Roll and 
Sideslip Angle 

Command



Adaptive Critic Implementation:
Action Network On-line Training

Train action network, at time t, holding the critic parameters fixed

[Balakrishnan and Biega, 1996]
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Adaptive Critic Implementation:
Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed

[Balakrishnan and Biega, 1996]
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Scaling effect:
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On-line Neural Network Training Goal

• Given a target, t(p), for the network output, z(p):

with network parameters, w, provided by the initialization phase. 
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Comparison of Neural Network Training Algorithms

• Local 

convergence
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Small

LowMedium-
High

Resilient

Backpropagation

• Memory

• Complexity

LargeHighExcellent

(Highest)

Extended

Kalman Filter

• Memory
• Complexity

LargeMediumExcellentLevenberg-
Marquardt

• Scaling
• Speed

SmallLowPoorBackpropagation

Main

Drawbacks

Memory

Requirement

Implement.

Complexity

SpeedTechnique



Resilient Backpropagation

Store w, and ∆∆

NN Architecture and w (initialization)
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Resilient Backpropagation Algorithm Performance

Adaptive critics neural network controller test case: Action Network
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Summary and Conclusions

• Adaptive critic flight controller:

Improve aircraft control performance under extreme conditions

• Systematic approach for designing nonlinear control systems,

innovative neural network training techniques

• Adaptive critic neural network controller implementation

v Algebraic pre-training based on a-priori knowledge
v On-line training during simulations (severe conditions)

Future Work:

• Testing: acrobatic maneuvers, severe operating conditions, 
coupling and nonlinear effects!


